CS551 Paper Critique 1 (Fall 2004)

Written by: Utpal Aradhye (uvayr5@umkc.edu)

Reviewer:
Utpal Aradhye, Graduate Student MS-CS, UMKC

Course: CS551

Paper:
Service Oriented Computing by M.P. Papazoglou and D. Georgakopoulos

Summary:
This paper introduces Service Oriented Computing (SOC) as a paradigm. This is a powerful new applications development technique that provides better flexibility, reusability, and interoperability. In the first section the paper gives an ‘Overview of Services’, defines what SOC means and describes the associated terms like SOA (Service oriented architecture), basic services, service clients, service providers, and service aggregators.

The Extended Service Oriented Architecture has a layered composition. The lowermost level contains the actual services that provide basic service operations. The middle layer is the Composite Services layer that performs Co-ordination, Monitoring, Conformance and QoS composition. In a nutshell, this layer uses the lower services and their properties to provide a consolidated service offering.
The upper layer is the ‘Managed Services’ layer that provides the required functionality to support critical applications. Additional features like application effectiveness assessment, and visibility into individual business transactions (better monitoring) and status notification are provided by this layer. The organizations performing this functionality are called Service Operators. The Service Mgmt layer also provides support for ‘Open Service Marketplaces’.

The objective of ‘Open Service Marketplaces’ is to provide an open platform where buyers and sellers can be brought together and business may be conducted electronically or by using aggregate services for supply/demand. They offer assured quality of service using SLAs. They are created and maintained by ‘Market Makers’.
SOC is implemented on the Web using Web Services. SOA principles also apply here. Services use SOAP calls carrying XML data. Web services are currently evolving from the lower layer to the Composition Layer.
Next the paper goes on to describe the focus of articles written by other authors Yang (raising the abstraction level), Meredith and Borg (SOA Composition layer complexity problem), Little (transactions involving web services) and Casati et. Al (Operations Management).

Strengths:
· Component based system hence reuse is good and development cost for any business solution is lower.

· Fast time to market. By using existing unit functional components and stitching them together as needed, any solution can be implemented faster.

· Availability of market tested components so risk in development of a new application is only limited to the integration issues.

· Maintenance costs also lower once system is ready since it can be centralized and outsourced.

· Allows more granularity for business to choose only specific services/components as needed. So a business spends only on what it really needs. And buys it component wise as required. Any additions of services can be made as need arises.
· Web based support is getting stronger so it can be integrated with existing familiar interfaces for users.

Weaknesses:

· Integration cost can spiral up and cross limits if components provided by different entities are inherently not compatible (and not previously tested together).

· Security is a concern since many of the services will be widely distributed and used by many users. A service user may not have control over where its data flows if a large number of services and providers are involved.

· Service modeling and design methodologies are not well defined.

· Large Transactions over such distributed components need special handling (need to be broken up into smaller transactions) and commit and rollback mechanisms need to be well defined.

· Design tradeoffs are required since the original goals are flexibility, reusability, and interoperability, but meeting all of these goals will go against fast time to market and low development cost, hence compromises will be needed.

· Implementing QoS standards for the whole service may be difficult since various component services have their own standards and peak and typical performances.
Critical Questions:

1. Will SOC integrate well with the existing business functionality that is deployed?

2. Will web based services be able to provide the robustness, timely service and sufficient security for large business users to adopt it?

3. Has this approach actually demonstrated a saving in development and usage costs (in real test cases) or is this still a theoretical assumption?
1

