CS551 Paper Critique 2 (Fall 2004)

Written by: Utpal Aradhye (uvayr5@umkc.edu)


Reviewer:
Utpal Aradhye, Graduate Student MS-CS, UMKC

Course: CS551 (Fall-2004)
Paper:
Web Server Software Architectures by Daniel A Menasce
Summary:
This paper discusses the impact of the web server s/w architecture on the performance and scalability of Web Services. Author is of the opinion that good s/w architecture is paramount to the efficient usage of the server’s physical resources. It classifies the web server architectures and presents a quantitative analysis of some architectural options. The author identifies two main factors in this context. Process Models and Pool Size Behaviour. 
Processing models can be process based, thread based or hybrid. The pure process based model offers stability but incurs huge processing overheads for the web server. The thread based model offers efficient processing but is weak on stability since threads share address spaces. The hybrid model attempts to use the strengths of both while reducing their weaknesses. It consists of multiple multi-threaded processes. It offers processing times lower than pure process based model and stability more than pure thread based model.
Pools of processes or threads can be static or dynamic. In static the number of processes/threads remains constant and if more requests arrive than the pool they wait in a queue. On high loads, the queue (response time) increases and on low loads the processes remain idle. In the dynamic approach, processes are created and destroyed according to load (keeping a fixed number of idle processes/threads more than the number of current requests). Processes can also be programmed to self-terminate after completing a fixed number of requests, this approach aids in reducing memory leaks.
The author explains terms like Service Time, Physical Contention and Software Contention that compose the total response time of a web server. Then he goes on to explain the effect that the number of idle processes can have on the behaviour of the server with varying load. As the loads increase the number of idle processes reduces and near the peak load, the server can become very unstable. This condition can be avoided by dynamically allocating more processes to keep a certain number of idle processes always ready to take the load.

The author concludes by saying that software is an important component of server design and poorly designed s/w architecture can give high response times even when the physical resources of the server are free. He recommends the use of analytic performance models to allocate resources according to load variation since this task is too complex to be done well by humans.

Strengths:
· It brings to light the fact that software architecture can be the Achilles Heel in the web server performance even with good physical resources. Hence the attention focused on the s/w architecture is valuable.
· Presents the tradeoff between process based and thread based approach very well.

· Presents the hybrid model to get the best use of processes and threads.

· Presents Dynamic Pool size management as a means to make efficient usage of memory as well as provide the necessary scalability for the server.

· Points out that Software Contention can be the major cause of performance degradation in servers and this is avoidable to a great extent by proper design.

· Presents effectively the effect on performance by the presence of idle processes with increasing load.

Weaknesses:

· The modification of the process or thread level model will entail major changes in the core of the server s/w architecture. Making changes to it is a non-trivial task.
· Determining the number of processes/threads optimal for each type of application will be a significant task (& no proper technique is proposed)

· It assumes that the major delays in web servers are due to Software contention, but not mentioned the statistics or measurements that show this. 
· There is no rationale for having 10 or 11 idle processes. No model is presented to determine how we decide the number of idle process and why do we need them in the first place when dynamic process/thread allocation can create them on the fly as needed.

Critical Questions:

1 The paper says that we can have a hybrid model with processes composed of threads, but it does not mention the number of processes and that how many threads each process should contain. Nor does it mention the number of processes. What would be the model on the basis of which one could be able to determine the processes and threads for a given load size or server implementation.

2 Performance Measurement: The author states that the performance of the hybrid model with dynamic process allocation will give a better performance, but he has not presented the comparision results of actual load studies (or simulations) for this approach in comparision with the results for the existing approaches.
3 What would be the increase in cost that would go in making these changes to existing web server software. Could this model be implemented on existing hardware configurations or will it need to be implemented only with new installations. Will an implementation of this work properly when some servers of an application (connected to centralized databases) are running older versions and some running newer versions?

1

