CS551 Paper Critique 4 (Fall 2004)

Written by: Utpal Aradhye (uvayr5@umkc.edu)


Reviewer:

Utpal Aradhye, Graduate Student MS-CS, UMKC

Course: CS551 (Fall-2004)

Paper:

A Tale of Three Disciplines and a Revolution
Summary:

The author compares the evolution of the disciplines of Circuit Theory, Genetic Engineering and Software Engineering as three disciples and implies that Software Engineering has failed to take on the structured and mathematical approach to evolution that the other disciplines have taken. And this failure has resulted in an industry that is full of quality issues and budget overshoots.
The author points out that there is very little correlation between the academic and the industry aspects of Software Engineering practices. He starts off by describing Circuit Engineering evolution and how it was in the hands of mathematicians and engineers that had to take a structured approach to development to handle the complexity. Reuse was a key concept and small circuits were aggregated to form ever larger ones. The circuit specifications and manuals effectively hid the complexity of the internals from the users of the circuit. Design tools were standard and Reverse Engineering was also an important aspect. All these were the strengths of Circuit Engineering and have led to a successful and efficient discipline today.
Next he examines Genetic Engineering and its evolution which followed a faster pace of growth. Gen Eng is basically reverse engg since the working model is already there. Genetic Engineers also adopted the concepts of sequence reuse. They also resorted to mathematical models for analysis to handle the complexity. GE was also structured in the sense that expertise was sought from the disciplines that it was needed from.. be it computer science or mathematics or biology. 

Both the disciplines above have things in common like standards for good practices, consensus on processes, fixed foundations and certifications for people, processes and organizations. In them, there is a strong correlation between what is theory and what is practice. So theory is very effective.

Contrasting to this, though Sofware Engineering started off on a structured base (since it can be expressed as a structured problem with), it lost steam and progressed by dint of non-conformist intellect and huge money spending. Though achieving the quality and reliability in SE is possible (and sometimes cheaper than in circuits), we have not actually done it. Designing or testability, using mathematical models and standard techniques is not done in SE. Good Science and engineering practices that have benefited other disciplines are almost completely ignored in SE. 
The result is that today’s industry standard software is full of chaos, failures and risk to the public. The author states that there is a limit to the complexity that can be handled in an ad-hoc manner and that limit is not reached in SE. We now need to pay attention to the colossal wastes of money and high risk that we are exposed to.

The author points out that university curricula and industry need to be brought in synch. To stop accepting low quality software as acceptable and to demand standards and certifications for the creators of software. Next the author presents some things that need to be done to the SE industry to correct the problems: these include standard notation with mathematical fidelity, best practices, standards & tools, trained and certified workforce, industry that will employ only the truly qualified.
The author accepts that it will take major effort to bring academia and industry together and proposes 3 fronts on which advances need to be made: 

Certification – to certify software as having quality design and reliability (e.g. mathematical/compilers etc. )

Licensing – Certifying individuals and processes as being mathematically sound and safe.

Curriculum Reform – Making the curriculum rigorous and updated enough to produce engineers that can surely provide the proper solutions.

The author points out the need to unify SE as a science with defined and proven principles, techniques, tools and standards and not the ad-hoc industry that is currently is. He concludes by saying that theoretically, software is the only component that can be perfect and we need to take a serious look at this.

Strengths:

· The points brought forward that software engineering lacks structure and standardization is strong.

· The disjointed academia and industry is a real problem brought forward.

· The need for reuse and having established good practices is both extremely necessary and within feasibility limits and is a good point.
· The point that blaming haphazard state of affairs on brilliant programmers and huge sums sunk into s/w is an excellent point.
· The acceptance that SE as a discipline has succeeded in theory but largely failed in practice is an important realization that the entire industry should realize and the author is bold in accepting it.

Weaknesses:

· Practical implementation of the restriction of software development to certified and truly capable engineers is a pipe dream with little chance of actual implementation. 

· The author proposes a lot of solutions that need to be implemented in the SE area which are very sound theoretically, but like the rest of SE, there is a huge gap betn theory and practice since he does not tell us how each of these things can be achieved. He tells us what is good (and we agree) but not how to get there.

· The author tells us that there is so much wrong with the industry, but he should accept that had the industry grown in a structured manner, it might not have been able to achieve the growth that it did. 

· The author draws parallels between how Circuits, Genetics and also software can be expresses as structured mathematical problems, but I disagree with the comparision since s/w problems are not quite as structured as are the other two disciplines.

Critical Questions:

1 Comparing with Circuit Engg is not very useful since the fundamental reason for correct circuit design is that manufacturing circuits is expensive and hence getting it right the first time is very important whereas in software, the product can be modified if delivered with errors. This is impossible in a circuit. A chip with a flaw is zero use. When this compelling reason is absent in s/w how will you generate the motivation to deliver a working solution in an intensely cost sensitive industry that has learnt to tolerate errors as a part of the product?
2 How will you control the use of techniques even if you determine that they are good ones? Circuits and Genetic engineering are not backyard disciplines, both need big organized setups to run hence are easier to control and standards easier to enforce. Software can be designed and implemented by anyone. Compelling people to adopt standards (and hence higher costs) is extremely difficult in this case. It is like trying to control music piracy using 70rpm era techniques when you have the unstoppable internet and mp3. Same is with SE.

3 The only way people are going to agree to spending on structured and scientific s/w development is when people see the FINANCIAL benefits of doing so. Till the time that such benefits are unambiguously demonstrated, there will be no takers for it. Someone has to go out and prove this… How will this happen and who will do it? 

1

